Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.18.500430

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus originated in wild bats from Asia, and as the resulting pandemic continues into its third year, concerns have been raised that the virus will expand its host range and infect North American wildlife species, including bats. Mexican free-tailed bats (Tadarida brasiliensis: TABR) live in large colonies in the southern United States, often in urban areas, and as such, could be exposed to the virus from infected humans. We experimentally challenged wild TABR with SARS-CoV-2 to determine the susceptibility, reservoir potential, and population impacts of infection in this species. Of ten bats oronasally inoculated with SARS-CoV-2, five became infected and orally excreted moderate amounts of virus for up to 18 days post inoculation. These five subjects all seroconverted and cleared the virus before the end of the study with no obvious clinical signs of disease. We additionally found no evidence of viral transmission to uninoculated subjects. These results indicate that while TABR are susceptible to SARS-CoV-2 infection, infection of wild populations of TABR would not likely cause mortality. However, the transmission of SARS-CoV-2 from TABR to or from humans, or to other animal species, is a distinct possibility requiring further investigation to better define.


Subject(s)
Coronavirus Infections , Infections , Tooth, Impacted , COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.08.22273621

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic presents a continued public health challenge across the world. Veterinary diagnostic laboratories in the U.S. use real-time reverse transcriptase PCR (RT-PCR) for animal testing, and many are certified for testing human samples, so ensuring laboratories have sensitive and specific SARS-CoV-2 testing methods is a critical component of the pandemic response. In 2020, the FDA Veterinary Laboratory Investigation and Response Network (Vet-LIRN) led the first round of an Inter-Laboratory Comparison (ILC) Exercise to help laboratories evaluate their existing real-time RT-PCR methods for detecting SARS-CoV-2. The ILC1 results indicated that all participating laboratories were able to detect the viral RNA spiked in buffer and PrimeStore molecular transport medium (MTM). The current ILC (ILC2) aimed to extend ILC1 by evaluating analytical sensitivity and specificity of the methods used by participating laboratories to detect three SARS-CoV-2 variants (B.1, B.1.1.7 (Alpha) and B.1.351 (Beta)). ILC2 samples were prepared with RNA at levels between 10 to 10,000 copies per 50 μL MTM. Fifty-seven sets of results from 45 laboratories were qualitatively and quantitatively analyzed according to the principles of ISO 16140-2:2016. The results showed that over 95% of analysts detected the SARS-CoV-2 RNA in MTM at 500 copies or higher for all three variants. In addition, 81% and 92% of the analysts achieved a Level of Detection (LOD95 eff. vol. ) below 20 copies in the assays with nucleocapsid markers N1 and N2, respectively. The analytical specificity of the evaluated methods was over 99%. The study allowed participating laboratories to assess their current method performance, identify possible limitations, and recognize method strengths as part of a continuous learning environment to support the critical need for reliable diagnosis of COVID-19 in potentially infected animals and humans.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL